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ABSTRACT

The statistical procedure advocated by Harker & Parker (1945) for the
estimation of true triple junction angles in annealed aggregates of opaque
material, is questioned in the light of more recent data from transparent
sections suggesting that the true angle may itself have a natural variation even
at equilibrium. A computer simulation technique is used to show that the mean
of the true triple junction angle can be estimated (with varying precision)
from the frequency distribution of apparent angles provided that the natural
variation of the true angle does not have a standard deviation greater than
about 20°. Theoretically, the standard deviation of the true angle variation can
also be deduced from the apparent angle distribution but it is shown that this
is only feasible if the standard deviation of the true triple junction angle is
greater than 10°.

Published apparent angle distributions do not conform to the theoretical
distribution and it is suggested that they are similar to those that would be
obtained if triple junctions making low angles with the section plane are not
measured. This restricts the information that can be obtained and questions
the validity of some results.

INTRODUCTION

When a granular aggregate such as a metal ceramic or rock is deformed
and then annealed at an elevated temperature, the individual grains readjust to
form shapes that are dictated by the requirements of space filling and the
minimizing of interfacial free energies (Smith, 1948). The equilibrium con-
figuration in an isotropic aggregate is an even grained array of polygonal grains
with planar or smoothly curved interfaces tending to meet three at a time in
a line known as a triple junction (Fig. 1a).

The angle subtended by any pair of the three interfaces meeting at a triple
junction is a function of the specific surface free energies of the interfaces
which, in the absence of surface impurities, are numerically equivalent to the
interfacial tensions (Kretz, 1966). Thus, the junction can be represented in
section by interfacial tension vectors (Fig. 1b). From Fig. 1b (after Smith,
1948; Kretz, 1966, etc.), it can be seen that the interfacial tensions (y) and
the included angles () are related by:
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Fig. 1 (a) A random section through triple junctions in annealed iron (after
Smith, 1948).

(b) Interfacial tension vectors (y) at a triple junction in a three phase
aggregate. The Y,,> €tc. are the specific interfacial tensions
between phases 1 and 2, etc.

(¢) Interfacial tension vectors (y) at a two phase triple junction.

0, is the dihedral angle.



f the aggregate is a single phase theny,, = = v,, and hence
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6, = 6, = 6, = 120° at equilibrium.

similarly, in a two phase aggregate at equilibrium (Fig. 1¢)
Yy = Yyp €08(0,/5)

vhere 6, , the dihedral angle, can have any characteristic value.

The microstructure that is developed in an annealed aggregate is a funct-
on of the relative interfacial free energies and the proximity to equilibrium.
he measurement of triple junction angles is one method used to evaluate
»oth these parameters and to interpret the microstructure. It is a common
yrocedure in metallography (Chadwick, 1972) and to some extent has been
ipplied to rocks. For example, Stanton (1964), Kretz (1966), Vernon (1968),
spry (1969), etc. have interpreted the metamorphic history of rocks from the
nicrostructure on the basis of measured triple junction angles (assuming
:quilibrium), while Stanton & Gorman (1968) have determined the proximity
‘0 equilibrium using triple junction angle measurements. Qualitative evaluation
»f the triple junction relationships are implicit in many studies (e.g. Rast,
1965).

AEASUREMENT and STATISTICAL PROBLEMS

Triple junction angles in thin sections of transparent minerals present no
-eal measurement problems. Each junction can be so oriented on a universal
itage that the true triple junction angle can be measured. (The angle measured
n a plane normal to the junction line is the true angle). In sections involving
»paque minerals this method is not normally feasible and only apparent angles
:an be measured.

The remainder of this discussion is concerned with the problems of
sstimating the true triple junction angle in opaque sections. A random section
hrough an aggregate of polygonal grains can cut any given triple junction
ingle such that the observed apparent angle can be anything between 0° and
180°, although with greatly differing probabilities. Harker & Parker (1945)
thowed that if all the randomly oriented triple junction angles (or dihedral
ingles) have the same true value in the aggregate then the most probable
ipparent angle will also be the true value. The probability distribution of
ipparent angles for true dihedral angles of 90° and 120° are shown in Fig. 2a.

The procedure suggested by Harker & Parker (1945) and elaborated by
smith (1948) is to measure a large number of apparent dihedral angles and to
slot their frequency distribution. If the distribution agrees closely with the
‘heoretical distribution, then that angle most frequently observed will be the
rue dihedral angle. In reported practice, however, it appears that the step
:omparing the observed with the theoretical distribution has usually been
gnored. One aim of this paper is to examine the validity of that practice.



If one examines published distributions of apparent triple junction angles
in metals or sulphides (e.g. Fig. 2b) then two anomalies are apparent. The
frequency of the modal class is commonly 10% to 15% lower than the theoret-
ical frequency and the dispersion is much less than it theoretically should be.
This latter is reflected in ranges that rarely exceed 120° (and commonly are
less than 100°) and lower standard deviations than expected.

There are several reasons why an observed apparent angle distribution may
be different from the theoretical distribution, even if their modes are the same:

1) It may be that the grain shape has not yet reached equilibrium and
one would expect that the distribution would “peak up” as equilibr-
ium is approached. Stanton & Gorman (1968) use the change in
standard deviation of the apparent angle distribution in this way as a
measure of the rate of annealing.

2) Even at equilibrium the true dihedral angle may deviate significantly
about a mean value. Kretz (1966) and Vernon (1968) show that this
is due to the variation of interfacial free energy with orientation and
that the true angle may itself have a distribution with a standard
deviation up to 20°, depending on the mineral.

3) Triple junction lines that are oriented non-randomly also may be a
factor. Since the statistical procedure of Harker & Parker (1945) is
not applicable to aggregates with a preferred orientation, this factor
will not be considered in this discussion.

In either of cases (1) or (2) above, the observed distribution of apparent
dihedral angles is a combination of two separate distributions, one being the
natural variation of the true angle and the other being the probability distribut-
ion for the true angle with no variation. Theoretically, it should be possible to
extract the standard deviation of the natural variation from the observed
apparent angle distribution. It can be shown from basic statistics (e.g. Freund,
1972, p.195, Theorem 6.2) that:

0T2 = 0(2) ~ o3 (2)
where: op = standard deviation of the natural variation in the true angle.
0, = standard deviation of the observed apparent angle distribution.
o, = standard deviation of the apparent angle distribution with no
natural variation.

(In this paper, the symbo!l ¢ will refer to the population standard deviation,
and the symbol S will refer to the sample standard deviation.)

No attempt to derive this natural variation in the true angle appears to
have been attempted in published data although, for example, S.. may have
been a more appropriate measure of the progress of annealing in gtanton and
Gorman’s (1968) experiments. The problem lies in the fact that theoretically
Oy should be greater than either o.. or ¢, and, as discussed above, this is
rarely the case in recorded measurements. Stanton & Gorman (1968) quote S
values for fully annealed galena and sphalerite in the range from 9° to 139
whereas the ¢, value derived from Harker & Parker (1945) is 22.1 2°.

In summary, the problems associated with the determination of dihedral
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Fig. 2 (a) Theoretical frequency distributions of apparent triple junction

angles for true angles of 90° and 120° (after Harker & Parker,

1945).

(b) Observed apparent triple junction angle distributions in various
annealed aggregates (sp = sphalerite; ga = galena; cp = chalcopyrite).
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s at triple junctions in opaque specimens pose the following questions:

(1) What is the effect on theoretical apparent angle distributions such as
those shown in Fig. 2a if the true angle also has a natural variation
with standard deviation .7

(2) Is the mean or the mode of the observed distribution the better
measure of the true triple junction angle?

(3) How large can o.. be before the true angle cannot be estimated with
any great confidence? That is to say, to what precision can the true
angle be estimated for any given o..?

(4) Can S.. always be extracted from the S_ of the observed distribution?

(5) Why Jo most reported apparent angle distributions have a standard
deviation (S o) much lower than expected?

PUTER SIMULATION OF APPARENT DIHEDRAL ANGLE DISTRIB-

UTIONS

A computer simulation of the measurement of apparent dihedral angles

has been established in order to evaluate the various statistical problems out-

lined

. Random numbers are used to define the position of a randomly oriented

triple junction with respect to a plane of section (see Appendix). The apparent
angle produced can be calculated and the process reiterated any number of
times to simulate separate readings. Simultaneously other random numbers are

used to describe the true angle which has a normal distribution about any given
mean and with any given standard deviation, 0.
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Fig. 3 Computer simulated distributions of apparent triple junction angles on

random sections. o = standard deviation of the true angle about 120°
mean. N = number of “readings”. X = mean of observed distribution.
S = standard deviation of observed distribution.



Some results of this simulation are shown in Tables 1 and 2 and in Fig. 3
for the case in which the true dihedral angle is 120°. Tables 1 and 2 describe
in detail the statistics of simulated apparent angle distributions for various true
angle standard deviations (03 ) and various numbers of readings (N). oy ranges
from 0° to 30° and N varies from 50 to 1000 “readings”. The statistics from
two separate runs are shown together and all statistics are given to a 95% con-
fidence level. Bar graphs of some of the distributions given in the Tables are
shown in Fig. 3. Graphs from each row have the same standard deviation of
the true angle (07) and graphs in each column represent the same number of
“readings” (N). The sample mean (X) and standard deviation (S) of each
distribution is also shown. Bar graphs of this type are the forms of presentation
normally used.

In Table 2(c) equation (2) is used to estimate the standard deviation of
the true angle, S;, from the observed distribution. Where “—’ is shown, the
standard deviation of the observed distribution, S,, is less than that of the
theoretical distribution, o, . (For a true angle of 90°, oa is 24.77°; for a true
angle of 120°, g, is 22.15°). The precision of this estimation, shown in Table
2(d) is derived from a calculation of the estimated true angle using S, plus or
minus the precision interval shown in Table 2(b).

DISCUSSION

Since the work of Harker & Parker (1945), general practice has been to
take the most common value of the apparent angle distribution (i.e. the mode
or modal class) as an estimate of the true dihedral angle. From Table 1 it is
apparent that the mean is a more stable statistic and a better estimation of the
true angle than the mode. For op > 1° the mode becomes unreliable although
the modal class of 5° interval is reliable for or up to 10°. However, the posit-
ioning of the modal class is generally dependent on the mode. A more serious
drawback to the use of the mode is its greater unreliability for low numbers
of readings than the mean. An added advantage of the mean is that its pre-
cision can be estimated as shown in Table 1(b).

As o becomes large (e.g. or = 30°) the mean of the apparent angle
distribution shown in Table 1(a) becomes somewhat lower than the mean of
the true angle. This is due to the skewness of the apparent angle distribution
for a true angle of 120° (Fig. 2a). Thus for or = 30° the mean of the true
dihedral angle can only be estimated with very low precision. This problem
does not arise for a true angle of 90° as the apparent angle distribution is
symmetrical.

Even though the mean of the true angle distribution cannot be estimated
easily as op becomes large, the estimation of S; from S, using equation (2) is
quite valid and reliable. However, as the true o; drops below about 10° this
estimation becomes quite unreliable (Table 2[c]). The reason can be seen from
the theoretical curve of o, (Fig. 4). Below a op of 10° the o, values rapidly
approach a constant value (04). Thus, the estimation of o; becomes swamped
in the imprecision of determining 0q-

As discussed, most reported values of S, from observed apparent angle
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TABLE 1
Mean Precision of Mean
2 {95% confidence)

N=50 100 250 500 750 1000 (11. N=50 100 250 500 750 1000
120.6 122.6 1184 1184 117.9 120.0 6.1 4.3 2.7 2.0 1.6 1.3
120.1 119.8 118.0 119.9 118.8 119.8 0% 58 4.0 2.8 2.1 1.6 14
119.8 1184 118.6 117.5 119.7 1199 70 44 2.8 2.1 1.6 1.3
118.6 1209 119.2 120.0 119.5 119.9 1% 74 39 3.0 1.9 1.5 14
118.2 122.0 1199 120.5 119.0 118.8 4.8 3.8 2.8 2.0 1.7 1.5
123.7 119.7 120.3 119.8 119.2 120.7 5% 6.1 49 25 2.0 1.7 1.3
120.2 121.1 1184 120.6 120.3 1194 6.1 4.5 3.0 1.9 1.6 1.5
116.2 118.3 119.8 1194 118.5 119.7 10% 8.2 49 3.0 2.1 1.7 1.5
1122 1184 119.5 118.8 117.7 119.3 7.7 5.1 3.3 2.3 1.9 1.7
118.1 119.3 119.7 121.2 120.7 120.3 15% 66 5.8 3.3 2.3 1.8 1.6
119.8 121.5 118.3 1159 115.8 114.3 9.7 68 49 3.2 2.6 2.4
118.3 118.8 111.2 117.2 115.0 116.5 30% 108 74 4.7 3.3 28 24

(a) (b)

Mode Modal Class (5° interval)
N=50 100 250 500 750 1000 OT N=50 100 250 500 750 1000
123 119 119.5 119 120 120 125 120 120 120 120 120
120 119 119 121 120 119 0% 120 120 120 120 120 120
bim. 119 118 120 120 120 120 120 120 120 120 120
119.5 120 121 120 119 120 1% 120 120 120 120 120 120
poly. 119 121 116 120 122 125 120 120 120 120 120
bim. 121 123 126 bim. 125 5% bim. 120 120 125 120 125
poly. 125 1205 126 122 122 125 125 bim. 125 120 115§
138 131 123 128 125 119 10% 125 120 125 120 120 120
poly. poly.112 104 109 bim. 105 120 110 125 135 125
poly. 133 122 111 117 132 15% poly. poly. 120 115 115 120
poly. poly. 132 bim. 113 122 135 140 130 125 115 120
130 poly. poly. bim. 140 124 30% 165 100 120 135 125 140

(© (d)

TABLE 1 Statistics of the average of computer generated apparent angle distributions
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TABLE 1
M Precision of Mean
ean {95% confidence)

N=50 100 250 500 750 1000 Op N=50 100 250 500 750 1000
120.6 122.6 1184 118.4 1179 120.0 61 43 27 20 16 13
120.1 119.8 118.0 119.9 118.8 119.8 0% 58 40 28 21 16 14
119.8 118.4 118.6 117.5 119.7 1199 7.0 44 28 21 1.6 1.3
118.6 120.9 119.2 120.0 119.5 119.9 1% 74 39 30 19 1.5 14
118.2 122.0 1199 120.5 119.0 118.8 48 38 28 20 1.7 1.5
123.7 119.7 120.3 119.8 119.2 120.7 5% 61 49 25 2.0 1.7 1.3
120.2 121.1 1184 120.6 120.3 1194 6.1 45 30 1.9 1.6 1.5
116.2 118.3 119.8 1194 118.5 119.7 10% 8.2 49 30 21 1.7 1.5
112.2 1184 119.5 118.8 117.7 1193 7.7 5.1 33 23 1.9 1.7
118.1 119.3 119.7 121.2 120.7 120.3 15% 66 58 33 23 1.8 1.6
119.8 121.5 118.3 1159 115.8 114.3 97 68 49 32 26 24
118.3 118.8 111.2 117.2 115.0 116.5 30% 108 74 4.7 33 2.8 24

(a) (b)

Mode Modal Class (5° interval)
N=50 100 250 500 750 1000 OT N=50 100 250 500 750 1000
123 119 1195 119 120 120 125 120 120 120 120 120
120 119 119 121 120 119 0% 120 120 120 120 120 120
bim. 119 118 120 120 120 120 120 120 120 120 120
119.5 120 121 120 119 120 1% 120 120 120 120 120 120
poly. 119 121 116 120 122 125 120 120 120 120 120
bim. 121 123 126 bim. 125 5% bim. 120 120 125 120 125
poly. 125 1205 126 122 122 125 125 bim. 125 120 115
138 131 123 128 125 119 10% 125 120 125 120 120 120
poly. poly.112 104 109 bim. 105 120 110 125 135 125
poly. 133 122 111 117 132 15% poly. poly. 120 115 115 120
poly. poly. 132 bim. 113 122 135 140 130 125 115 120
130 poly. poly. bim. 140 124 30% 165 100 120 135 125 140

() )

TABLE 1 Statistics of the average of computer generated apparent angle distributions

(see text for details).



TABLE 2
s Precision of S0
0 (95% confidence)
N=50 100 250 500 750 1000 Op N=50 100 250 500 750 1000
22.2 217 214 228 221 20.5 43 43 19 14 11 09
20.8 20.2 22.2 239 230 221 0% 41 28 20 15 12 10
252 224 229 24.1 228 215 49 31 20 15 12 09
26.8 200 24.1 222 21.6 23.1 1% 53 28 21 14 1.1 1.0
17.3 19.6 225 231 21.0 238 34 27 20 14 11 1.0
219 248 20.2 224 231 214 5% 43 34 18 14 12 09
21.8 232 243 218 229 237 43 32 21 13 12 1.0
29.5 25.1 24.1 23.7 233 250 10% 58 35 21 1.5 12 1.1
27.7 262 26.6 25.7 26.1 273 54 36 23 16 13 12
23.8 294 263 258 25.7 26.2 15% 47 41 23 16 13 11
35.1 345 39.7 360 365 38.7 69 48 35 22 18 1.7
39.1 37.7 38.1 374 396 385 30% 77 52 33 23 20 1.7
(a) (b)
Estimated ST Precision of Estimated ST

N=50 100 250 500 750 1000 U N=50 100 250 500 750 1000

1.3 - - 5.6 - - 13.3+ - - 5.6+ - -

- - 24 92 62 1.0 0% - - 74+ 53 6.2+ 5.7+
120 34 6.1 94 55 - 12.0+ 9.2+ 6.1+ 50 5.5+ -
15.2 - 95 14 - 6.5 1% 152+ -~ 9.5+ 6.7+ - 6.5+

- - 43 6.6 - - - - 6.2+ 6.6+ - -

- 112 - 38 6.7 - 5% - - 11.2+ 5.1+ 6.7+ -

- 6.9 10.1 - 6.1 8.4 - 7.5+ 8.2 - 6.1+ 3.6
196 119 97 86 74 11.7 10% 109 119+ 9.7+ 6.1 6.1 2.6
16.6 14.1 14.7 132 138 16.1 142 95 48 35 2.7 21

8.8 194 142 134 131 140 15% 91+ 70 49 34 28 23
27.2 264 33.0 284 29.1 31.8 97 66 43 29 24 21
322 305 31.0 30.2 329 315 30% 99 68 42 29 24 21

(c) )
TABLE 2 Statistics of the dispersion of the same computer generated distributions

shown in Table 1.
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distributions are much lower than expected. In this situation the previous
discussion becomes meaningless, and it is difficult to interpret theoretically
results such as those of Stanton & Gorman (1968), in which S is used as a
quantitative measure of the progress of annealing. (However, their general aim
of qualitatively proving that annealing has occurred is amply demonstrated.)
Although it is difficult to retrieve data from most published bar graphs, it
appears that apparent angles less than 30° are very rare and, in the sulphide
literature, reported angles of less than 60° are uncommon. For some reason,
the small angles (which have a strong influence on the standard deviation) are
not being measured. A possible reason is that low angles between a triple
junction and the section plane may produce apparent angles that are very
diffuse and difficult to either measure or possibly to even recognize as a triple
point.

Fig. Sa shows the relationship between the orientation of a random
section (see Appendix for the definition of the orientation parameters, § and
¢) and the observed apparent angle, A, for a true triple junction angle of
120°. 0 is the angle between a triple junction and the normal to the section
plane. It can be seen that if all the low junction angles are omitted (say,
sin? 6 > 0.75), then not only are all the extreme apparent angles not observed
but even some of the angles around 120° are not observed.

Fig. 5b shows the results of computer simulations in which all the
junctions inclined at less than 30° to the section (sin? 9 > 0.75) are omitted.
The apparent angle distributions produced are very similar to many of the
published distributions. If the standard deviation of the true angle is very low,
(0° say), the modal frequency is reduced and the standard deviation is of the
order of 10° to 15°. The mean and the mode, however, still reflect the true
triple junction angle.

CONCLUSIONS

Measurements of apparent angles in a random section through triple
junctions can be used to estimate the true triple junction angle. The best
estimate is the mean of the observed distribution rather than the mode. Even
if the true angle has its own natural variation around some mean, this mean
can be estimated with confidence if it is approximately 90°. If it is about
120° then it can still be estimated with reasonable confidence provided the
natural variation does not have a standard deviation of 20° or more.

Provided that all precautions are taken to measure the entire apparent
angle distribution (i.e. all junction orientations, even very low ones) then
various statistics of the distribution can be used for quantitative purposes.
In particular, it is possible to estimate the standard deviation of the true angle
distribution provided that this is greater than about 10°.

Most published distributions from opaque aggregates do not show the
entire apparent angle distribution and it is surmised that this is due to the
omission of apparent angles of those triple junctions that are inclined at low
angles to the section plane. Even in this case, it is found that the mean of the
apparent angle distribution is still a good estimate of the true angle although
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other statistics should not be used for quantitative purposes.

(In a recent publication that has come to the attention of this author
since this paper was originally submitted, Lindh (1976) presents some apparent
angle distributions from measurements on the dihedral angles of pyrrhotite,
sphalerite and hematite at their triple junctions with quartz/quartz boundaries.
He shows that none of the distributions fit the theoretical distributions very
well (x 2 — test, 5% significance) and suggests that this may be due to having
overlooked those triple junctions that are at a low angle to the section.)
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APPENDIX
Method of Computer Simulation

The relationship between the true angle, T, at a triple junction, the apparent angle, A,
and the position of a random section can be described by setting up a cartesian coordinate
system related to the triple junction as follows: the z-axis is along the triple junction; the
x-axis is normal to the z-axis and bisects the triple junction angle; and the y-axis is normal
to both these (see Harker & Parker, 1945, Fig. 10).

A set of spherical polar coordinates can then be set up such that:

X = rsinf cos¢
y = rsinfsin¢
z = rcosé

6 and ¢ can be considered as describing the colatitude and longitude, respectively, of
the point of impingement of the normal to the section on a unit sphere. The apparent
angle, A, can be described by the relationship:

tan A = 2sin T cos 6 (Harker & Parker, 1945)

sin® B(cos 2¢ —cos T) + 2 cos T

Harker & Parker (1945) showed that the probability of a triple junction making an
angle 6 with the normal to a random section is proportional to sin20. Thus, random numbers
between O and 1 and between O and 360 can be given to sin0 and ¢, respectively, to repre-
sent the probable orientation of random triple junctions cut by a random section plane.
These values of sin®f and ¢ can be substituted in the above equation to derive the apparent
angle.

A Monte Carlo sampling method, suggested by Naylor et al. (1966) is used to gener-
ate random numbers with a normal distribution of a specified mean and standard deviation.
The random number so chosen is then substituted for T in the above equation to simulate
the natural variation in the true angle.



